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The next generation mobile networks will feature the widespread deployment of artificial intelligence algorithms

< IEEE

at the network edge, which provides a platform for edge intelligence. In this work, we propose new air-interfaces i A
targeting the edge inference systems, called ultra-low-latency (observation) feature transmission.
One framework consists of a novel transmission approach that exploits classifier's robustness, which Is gl ﬁ
measured by classification margin, to compensate for a high bit error probabillity resulting from ultra-low-latency = —
transmission (e.g., short packet and/or no coding). By utilizing the tractable Gaussian mixture model, we &
mathematically derive the relation between bit error probability and classification margin under constraints on

classification accuracy and transmission latency. The result sheds light on system requirements to support ultra- Features Inference
low-latency feature transmission. Finally, experiments using deep neural networks as classifier models and real Result

datasets are conducted to demonstrate the effectiveness of ultra-low-latency feature transmission In
communication latency reduction while providing a guarantee of classification accuracy.

The other approach to realize ultra-low-latency inference Is to leverage the hard deadline on the chronological |
occurrence of view collection and feature transmission. For this vision, we propose a novel framework of ultra- /

low-latency edge inference for latency-constrained distributed inference. The framework harnesses the interplay
between short packet transmission and accuracy improvements from multi-view sensing to meet a stringent
deadline while boosting the end-to-end inference performance. Under the latency constraint, a fundamental
tradeoff between communication reliability and the number of views, controlled by the packet length, Is revealed

and optimized. The optimization Is tackled by deriving accurate surrogate functions of the expressions for the
end-to-end inference accuracy.

“Edge Inference”

Ultra-Low-Latency Feature Transmission for Point-to-Point Inference

Principle: Robustness of Edge Inference Design: Ultra-Low-Latency Feature Transmission
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