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The advancement of Rydberg atoms Is driving a paradigm shift from

classical receivers to atomic receivers. Capitalizing on the extreme

sensitivity of Rydberg atoms to electric field via quantum jump, atomic ’

receivers can measure radio waves more precisely than classical receivers o, Incident

to support high-performance wireless communication. Although the atomic \_\‘“-—-:/ radio wave Photodetector

receiver Is developing rapidly In quantum-physics domain, Its Integration
with wireless communications Is at a nascent stage. In particular, systematic
methods to enhance communication performance are largely uncharted.
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Motivated by this observation, we propose to incorporate atomic receivers
iInto multiple-input multiple-output (MIMO) communications to implement .
atomic MIMO receivers. We establish the framework of atomic-MIMO

Laser generator

Energy levels (quantum states)

receivers by exploiting the principle of quantum sensing. Our model reveals - Rydberg atom 14 High-excited level
that the signal detection of atomic-MIMO systems is inherently a biased (highly excited atom) — N\ >
phase-retrieval problem, as opposed to the linear model In classical MIMO W\ 3) radio wave High-excited level

systems. To perform atomic-MIMO signal detection, an EXxpectation- i N> — NN\~
Maximization Gerchberg-Saxton algorithm iIs proposed to iteratively solve | Vv VV =

the biased phase-retrieval problem iteratively. Experimental results validate Low-excited level

that atomic MIMO receiver outperform conventional MIMO systems In +
sensitivity by 16 dB and in signal detection accuracy by 13 dB. Our work mVAVAVA <
serves as an important step towards advanced atomic wireless receivers for probe beam
next-generation communication systems. 1) Ground level
Framework of atomic MIMO receivers 1. Transmit signal of the k-th user: x;(t) = Re{s,e/*t}
2. Incident radio wave on the n-th atomic antenna:
(t) — Re{z Enklhnklskelwt + Er nhr nelwt}
Recerver Radio waves 'from users |

processor 3. Quantization: H(t) = dlag{hwe, hwg} i MT%ad&\yave from reference source
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Interaction of atom and radio wave: li,Is

the dipole moment operator of atom

4. Schrodinger equation: i llpit))—H(t)\l/J(

5. The probability of finding the atom at energy level |4): p = sin? (Q” t)

6. Rabifrequency: Q, = |X8_1 Xio1 ul€nhnrise + |
F——— e — — — — — — — i N

MIMO Electric dipole moment Wireless channel User signal

|| Transmit % Incident radio wave 7. Quantum shot noise results from the randomness of gastreiment:
| signal s k E(H;x) J

# 2 * N,: number of atoms
0'2 — * T, atom relaxation time
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41T H”egH T;-N, Quantum shot noise is much
weaker than thermal noise

Received 8. Transmission model of atomic MIMO receivers:
_ signaly = |¥K_ >k 1 Bég€ntrhnkiSk + by + wy| + Biased phase-retrieval as opposed
| to classical linear MIMO model
| Matrix form + Solvable using EM algorithm
y = |As + b + w|
Simulation Results
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(d) Rydiqule example pseudocode E 210 | ] Classical MIMO
T B\ Energy levels 52Ds/;,53P3; = 40 | % Atomic MIMO example
= is_si . — % Classical MIMO |
e e ) Transition frequency 5 GHz = 215 y —————— | |
i = {" = (0L); ning..., rabi_fr ncy... ; ; 20 40 60 30 100 )
SRR B o ey e Electric dipole moment* 1785.916qay Nurmber of receive anfennas 0 > 10 SN;f[ - 20 2 30
e
7 c.add_coupling(field_1, field_2,...) Number of participating atoms 10° L .. .
8 gu?utic}ﬁn:pr;rjgul::Ee_steaclli_state(c) or rq.solve_time(c) SenS!tIVIty (pOWGF Of Mlnlmum d_eteCtabIe eIeCt”C Normalized mean sauare error (NMSE)
\2_Plot(rg.get_observable(solution)) J Classical and atomic simulation parameters field) vs. the number of receive antennas :
RydIQule: Graph-based numerical computing *q = 1.6 x 1071 C: unit charge - 16 dB improvement in sensitivity than classical MIMO ) éﬁ tﬂz ilrgpclrgvrﬁrgnheer:tsire]ngilziﬂvsitl)_:/ realized
platform for atomic physics *ap = 5.3 x 10711 m: Bohr distance * 20 dB improvement in sensitivity than atomic SISO [Ref.1]
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