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• Federated Learning (FL): A framework enabling multiple clients to 
collaboratively train a model without sharing their private data, but privacy risks 
remain due to model weight attacks.

• Differential Privacy in FL: Integrating Differential Privacy (DP) into adds noise 
to model weights to enhance privacy protection.

• Communication Overhead: A major challenge in FL is the large 
communication overhead due to the transmission of model weights.

• Quantization for Efficiency: Quantization is commonly employed to reduce 
the communication overhead in FL by compressing the model weights.

Theoretical Analysis

Federated Learning with quantized Gaussian mechanism applied. The weight of each 
client is first perturbed by Gaussian noise and then passed to the quantizer.

Working flow of the Membership Inference Attack.
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Utility and MIA accuracy comparison varying 
the Gaussian noise variance during training.

Comparison of utility and MIA accuracy 
all with a noise variance of 0.03. 

• Lower Quantization, Better Privacy: The experiments confirmed that models 
with lower quantization levels exhibited lower MIA accuracy, indicating better 
privacy protection.

Motivations
• Privacy vs. Communication Trade-off: While quantization reduces communication 

costs, it introduces complexities in understanding and ensuring privacy protection

Contributions
• Theoretical Analysis: Provides a privacy budget analysis for quantized Gaussian 

mechanisms in FL using Rényi Differential Privacy (RDP), showing that lower 
quantization levels improve privacy.

• Experimental Validation: Empirical tests using Membership Inference Attacks (MIA) 
confirm the theoretical findings, where lower MIA accuracy refers to better privacy 
protection.

Numerical sketch of RDP budgets for Gaussian 
and quantized Gaussian mechanisms at 𝛼 = 1, 
with varying quantization levels 𝑘 from 2 to 64 

while keeping 𝜎 = 1 and ∆!	= 	1

• RDP:

• Theorem 2: Provides an upper bound of the privacy budget 
of the quantized Gaussian 

• Lemma 3: Proves that the upper bound in the previous 
theorem increases monotonically with quantization level 

• Quantized Gaussian vs. Gaussian: 
Quantized Gaussian mechanisms 
consistently outperformed standard 
Gaussian mechanisms in terms of 
providing a tighter privacy budget.


