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Robust Over-The-Air Aggregation for uplink OFDM system
under burst sparse interference

Abstract and Background: . Cogg?:r;)rl\\nel cells
Over-the-Air aggregation (OTA) Is a promising technology for Internet-of-Things (IoT) applications, but it w1 = duer (b1) ST EEEUE g NB-loT (« »))
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challenges to mitigate interference include: - Jgﬂvﬂvﬂw

1. Incompatibility with Digital FEC: Digital FEC cannot be employed for OTA as superposition of digital
codewords from edge devices results in a corrupted codeword

2. Lack of interference models: Practical interference is burst sparse in nature which has to be modelled

oroperly.via Bayesian priors

3. Unknown model parameters of the interference: Interference burst properties and amplitude Is
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Thus, In this work, we propose a novel framework of robust OTA with product analog code In presence of I P —
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1. Analog code for robust aggregation: We encode the message with Analog codes with product @ Cmm=ts e B L M : % i s.r:pl.f.eods
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3. Low-complexity Online Expectation-Maximisation (EM) algorithm: We develop an online EM Xk - [PE-1) () PR
(online machine learning) algorithm with low-complexity to learn the interference model parameters on @G x=6 7~ T 14 4 = i +C 3
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4. Encoder Optimisation: We then propose an algorithmic unrolling based Stochasatic Manifold Y =GiXG: +E+ W — p(e", 2W;¢1) | 4
Optimization to Improve encoding matrix under unknown interference patterns.
1. Modelling: 2. Inference Algorithm: 3. Encoder Optimisation: 4. Results:
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The first step is to design a Bayesian model o Output E®) = ©(" according to (77); * Message Lehgth., N'=300 (25 Resource Blocks)
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