

Department of Electronic and Computer Engineering Reconfigurable Intelligent Surface with Wide-Angle Passive Beamforming for Future Wireless Communication Systems

Prof. Ross Murch's Research Group

Reconfigurable Intelligent Surface (RIS) is a promising technology for future wireless communication. Their scattering can be controlled to enhance characteristics such as coverage, energy efficiency, and signal quality. We have developed a novel highly reconfigurable intelligent surface design that enables 3-D passive reflective beamforming in sub-6 GHz frequency bands.

Each element has 5 x 5 sub-elements with four electronic switches connecting sub-elements providing 16 states. Phase entropy is used to optimize the element to cover all 16 reflective phase states within the 0-360 degree range.

Geometry of the proposed RIS with 16 elements and associated controlling lines. A total of 64 diodes with inductors as chokes are mounted on the 16 elements.

Simulation and Experimental Results

Experiment setup for measuring the scattered wave pattern of RIS. The RIS is located at the back and two horn antennas are used as the transmitter and receiver. A VNA is utilized to measure the S21 parameter between these two antennas with RIS present.

Measured normalized scattered wave power pattern in the *xoz* plane with different steered beam θ_{beam} when (a) $(\theta, \phi)_{inc} = (0^{\circ}, \phi)_{inc}$ 0°) and (b) $(\theta, \phi)_{inc} = (45^{\circ}, 0^{\circ}).$

Our Related Journal Publications

Reconfigurable Intelligent Surfaces have significant potential in future 6G wireless communication systems

- 1. J. Rao, Y. Zhang, S. Tang, Z. Li, S. Shen, C. -Y. Chiu and R. Murch, "A Novel Reconfigurable Intelligent Surface for Wide-Angle Passive Beamforming," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 12, pp. 5427-5439, Dec. 2022, doi: 10.1109/TMTT.2022.3195224.
- 2. J. Rao, Y. Zhang, S. Tang, Z. Li, C. -Y. Chiu and R. Murch, "An Active Reconfigurable Intelligent Surface Utilizing Phase-Reconfigurable Reflection Amplifiers," in IEEE Microwave Transactions Techniques, Theory doi: on and 10.1109/TMTT.2023.3237029.
- 3. N. K. Kundu, Z. Li, J. Rao, S. Shen, M. R. McKay and R. Murch, "Optimal Grouping Strategy for Reconfigurable Intelligent Surface Assisted Wireless Communications," in IEEE Wireless Communications Letters, vol. 11, no. 5, pp. 1082-1086, May 2022, doi: 10.1109/LWC.2022.3156978.
- 4. Z. Li, N. K. Kundu, J. Rao, S. Shen, M. R. McKay and R. Murch, "Performance Analysis of RIS-Assisted Communications With Element Grouping and Spatial Correlation," in IEEE Wireless Communications Letters, vol. 12, no. 4, pp. 630-634, April 2023, doi: 10.1109/LWC.2023.3237232.

Acknowledgment

This work was supported in part by the Hong Kong Research Grants Council under the Areas of Excellence Scheme Grant AoE/E-601/22-R