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Abstract Even the artificial intelligence (AI) has been widely used and significantly changed our life, deploying the large AI models on
resource limited edge devices directly is not appropriate. Thus, the model split inference is proposed to improve the performance of edge
intelligence (EI), in which the Al model is divided into different sub-models and the resource-intensive sub-model is offloaded to edge
server wirelessly for reducing resource requirements and inference latency. Unfortunately, with the sharp increasing of edge devices, the
shortage of spectrum resource in edge network becomes seriously in recent years, which limits the performance improvement of EI. Refer
to the NOMA-based edge computing (EC), integrating non-orthogonal multiple access (NOMA) technology with split inference in EI 1is
attractive. However, the NOMA-based communication aspect and the influence of intermediate data transmission fail to be considered
properly in model split inference of EI in previous works, and the sophistication in resource allocation caused by NOMA scheme makes it
further complicated. Thus, the Effective Communication and Computing resource allocation algorithm is proposed in this paper for
accelerating the split inference in NOMA-based El, shorted as ECC. Specifically, the ECC takes the energy consumption and the inference
latency into account to find the optimal model split strategy and resource allocation strategy (subchannel, transmission power, computing
resource). Additionally, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation
error. The experimental results demonstrate that the performance of ECC is much better than that of the previous studies.
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We compare the performance of ECC-NOMA (ECC approach with NOMA channel) and ECC-
OMA (ECC approach with OMA channel, shorted as ECC in the following sections) with that
of the Device-Only, Edge-Only, Neurosurgeon, and DNN surgeon. We use the Device-Only
method as the baseline, i.e., the performance is normalized to the Device-Only method.
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consumption model), the problems that will be solved in this
study (finding the minimum inference delay, maximum QoFE and
minimum resource consumption simultaneously) are described.
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