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High Efficiency Inference Accelerating Algorithm for

NOMA-based Edge Intelligence

The main contributions of this paper can be summarized as follows.

1. In this study, we Integrate NOMA into the model split inference In El. To the
best of our knowledge, this iIs the first work to investigate the possibility and
approach of using NOMA technology to improve the performance of model

split inference In El under a multi-user scenario. Moreover, the challenges : " I
and Issues caused by Integration are also discussed In this paper. :_g 52 i
|

2. SiInce NOMA has a significant effect on model split point selection and energy
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account to find the optimal model split strategy and resource allocation
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strategy (computing resource, channel resource, transmission power) for
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The intermediate data

model on edge server

NOMA-based split inference in EI. Moreover, because the minimum energy
consumption and minimum Inference latency cannot be achieved
simultaneously, the GD-based algorithm is adopted in this study to effectively
achieve an optimal tradeoff between them.

3. Moreover, considering the complexity of this issue caused by uneven and
discrete intermediate data size, we propose a Li-GD algorithm to improve the
efficiency of the GD procedure. The key idea of the LI-GD algorithm Is that:
the Initial value of the ith layer's GD procedure Is selected from the optimal
results of the former (i — 1) layers’ GD procedure whose intermediate data
size Is the closest to the ith layer.

4. The properties of the proposed Li-GD algorithm are investigated. The Li-GD
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algorithm Is convergent, and the convergence time Is K =

complexity of the Li-GD |s 0(XKTMx31n2(x)) the approximate error is
smaller than Additionally, it can reduce the
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complexity and convergence time compared with the traditional GD approach.
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OPTIMAL MODEL SPLIT AND RESOURCE ALLOCATION ALGORITHM

A. Loop iteration GD algorithm

B. The properties of LI-GD algorithm

Since the optimization objectives shown in PO are opposite, we Corollary 1. When the values of ', £}, and w;, are know in advance, and we loose

Introduce the weight-based approach to construct the utility
function for each mobile user that contains both these objectives,
which can be expressed as: U; = w;T; + wgE; where w! and w®

the constraints of £;; € {0,1} and ,B}'fi € {0,1} to B;% € [0 1] and B;,i* € [0 1], the
utility function shown in before Is differentiable.

are the weights of inference delay and energy consumption, Corollary 2. The Li-GD algorithm is convergent, and the convergence time K =

respectively, and w; +wr =1. The weight represents the  Ix°—x"IIZ
Importance of each optimal objective to users. 2ne
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2, where 7 is the step size and n < -, € is the threshold of accuracy.
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