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The scheduler mainly consists of three key
components: cluster external load balancer,
cluster internal load balancer, and an elastic
scheduling module. First, the cluster external
load balancer partitions the entire model into
submodels according to the capability of clusters
in the swarm, which avoids the collaborative
efficiency being encumbered by the slowest UAV.
Second, the cluster internal load balancer is
responsible for generating data partition
schemes for UAVs in the same cluster, which
reduces the efficiency reduction induced by data
synchronization. Finally, the elastic scheduling
module conducts some mechanisms to deal with
unexpected situations, which controls the
scheduler to reschedule tasks for each UAV.
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Abstract Unmanned aerial vehicles (UAVs) play an essential role in emergency cases and 
adverse environments for applications like disaster detection and mine exploration. To 
process the massive volume of sensing data generated by various sensory payloads in these 
applications, existing works either compress deep learning (DL) models to conduct onboard 
computing, or offload raw data back to the resourceful ground station with the help of relay 
UAVs due to base station damage. However, the former sacrifices the inference accuracy of 
DL models (up to 10% accuracy loss), while the latter achieves high accuracy at the cost of 
significant latency, due to limited wireless communication resources in the multi-hop 
transmission. To address the problem, exploiting the resources of the UAV swarm including 
both task UAVs and relay UAVs, we build up an all-sky autonomous computing (ASAP) 
system to autonomously conduct collaborative computing in the swarm, to achieve both high 
accuracy and low latency of sensing data processing. In detail, we first propose a novel UAV 
swarm-native collaborative computing architecture, considering the general hierarchy and 
clustering structure of UAV swarms, as well as the characteristic of DL model execution. We 
then design an elastic efficient task scheduler to allocate computing tasks for UAVs, and 
update the scheduling scheme online when some UAVs are unavailable, with the aid of a 
lightweight and accurate DL inference performance predictor. Finally, we design an adaptive
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ASAP vs. Existing terrestrial collaborative edge 
computing. We compares the average computing 
latency of ASAP with DeepSlicing and MoDNN under 
three medium DNN models. Note that Deepslicing and 
MoDNN are designed for terrestrial IoT systems and 
not suitable for UAV swarm, we enable communication 
between all nodes for the two systems. Our system 
keeps the computing latency at a low level in contrast 
with two baseline systems in both scenarios. 

ASAP vs. On-board computing. when it comes to the 
system overhead, ASAP reduces the computing and 
memory overhead per node by up to 90.56% and 
90.02%, respectively, which greatly releases the 
burden of a single device. Although DeepSlicing and 
MoDNN show worse latency performance compared 
with on-board computing, it does not mean that they 
do not have latency advantages in any situation. In 
detail, they are more suitable for very weak devices, 
where the computing latency is much higher than 
transmission latency, not for the GPU enabled devices 
in our experiment, and ASAP can achieve more 
performance gain on these devices.

SYSTEM OVERVIEW

The goal of ASAP is to conduct efficient and 
reliable collaborative computing in the UAV 
relay swarm,which relieves the burden of air-
ground communication by transmitting valuable 
data results instead of raw data. The system is 
composed of three modules, i.e., elastic efficient 
task scheduler, lightweight accurate DNN block 
performance predictor, and adaptive inter-UAV 
inference data compressor . First, when there is a 
task to be processed, i.e., a DL model and a 
sequence of data, the elastic efficient task 
scheduler partitions the task to UAV clusters and 
UAVs inside to conduct efficient collaborative 
computing. Besides, the allocation scheme can be 
updated by the task scheduler when the status of 
UAVs varies, e.g., some UAVs become unavailable 
or rejoin the swarm. Second, the task allocation 
scheme is developed with the help of the DL 
inference performance predictor, which can 
estimate the inference latency of various models 
and data partitions on different UAVs at a clip. 
Finally, the intermediate data transmitted 
between UAVs will be further compressed by the 
adaptive inter-UAV data compressor to save the 
inter-UAV communication resource.
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Overview of ASAP design

ELASTIC EFFICIENT SCHEDULER

The proposed predictor decomposes DL inference latency prediction into operator-level prediction and latency 
fusion fine-tuning. The operator-level prediction is based on the relation between latency performance and 
hyperparameters of each operator, and the latency fusion fine-tuning uses a very small model to learn the fusion 
rules of DL frameworks. The architecture of the predictor has two phases: offline phase and online phase. In the 
offline phase, the inference latency of operators is measured to generate parameters of the operator-level latency 
predictor, and the operator fusion rule set is obtained from the latency of operator pairs. The latency of 
operators is collected to train the latency fusion fine-tuner. In the online phase, the latency fusion fine-tuner 
adjusts the operator-level latency of operators and adds them up to get the DL model latency.

Inference accuracy under different quantization levels of VGG16

The adaptive data compressor conducts 8-bit 
quantization and compression algorithms (e.g., gzip, 
LZ4, Bzip2.) on the intermediate data transmitted 
between UAVs to decrease communication overhead. 
Instead of a fixed quantization scale, the adaptive data 
compressor changes compression degree according to 
data size and communication rate between UAVs, which 
saves communication resources and guarantees the 
accuracy of tasks at the same time.
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inter-UAV data compressor, to adapt to the limited and 
dynamic communication resources between UAVs. 
Experiment results on 24 airborne computers and five real-
world UAVs show that, the proposed system can perform 
collaborative computing in a timely manner and effectively 
deal with situations when some UAVs become unavailable.
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